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Memory consolidation processes can be highly selective. For

example, emotional aspects of events tend to be consolidated

more readily than other, more neutral aspects. We first

describe evidence that the sleeping brain provides an ideal

environment for memory consolidation, and that active, as

opposed to passive, sleep-based consolidation processes are

particularly important in explaining why emotional memories

are retained so well. We then briefly review evidence that

elevated levels of stress support emotional memory

consolidation. Finally, we propose a working model that

describes why stress at encoding may set the stage for sleep to

etch emotional memories in the brain on a lasting, if not

permanent, basis, and we present recent data to support this

model.
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Memory for negative events is a double-edged sword.
Although our ability to learn from and remember negative
experiences is critical for survival, negative memory
biases contribute to the etiology and perpetuation of
affective disorders [1–3]. Recent research emphasizes
that to understand how memories for negative events
become etched in the brain, it is necessary to consider
both the stress and arousal experienced during the event
and the sleep that occurs shortly thereafter.

Although it is well known that emotional memory forma-
tion can be enhanced by sleep (e.g. [4,5]) and by stress
exposure (e.g. [6–8]), only recently has research investi-
gated how sleep and stress interact to influence emotional
memory consolidation. Yet there is biological and

psychological evidence for an overlap between these
factors. For example, the stress hormone cortisol peaks
during late-night rapid eye movement (REM)-rich sleep,
and elevated stress is a common trigger for sleep disrup-
tion (and vice versa; [9]). Recent evidence from our
laboratories suggests that the sleeping brain’s ability to
selectively enhance emotional memory consolidation
depends on stress and arousal levels at the time of learning,
with stress responses during learning setting in motion a
cascade of neurochemical events that lead to downstream
selective consolidation of emotional aspects of memo-
ries. These results link the traditionally separate fields of
stress and sleep by making two complementary sugges-
tions: first, elevated stress and arousal responses during
learning maximize downstream sleep-dependent emo-
tional memory consolidation effects, and second, sleep in
the delay interval enables stress-based emotional mem-
ory consolidation effects to emerge. We begin with brief
reviews of the literatures that separately link sleep and
stress to the consolidation of emotional memory and then
return to the idea that stress during learning interacts
with subsequent sleep to optimize the consolidation of
emotional memories.

Sleep and emotional memory consolidation
Consolidation processes, which occur slowly following
learning [10], depend on a molecular cascade leading to
structural and functional changes in neurons [11]. Multi-
ple levels of analysis suggest that the offline brain state of
sleep provides ideal conditions for consolidation [12,13],
including emotional memory consolidation ([14,15]; see
Box 1). At the molecular level, there are several immedi-
ate early genes related to synaptic plasticity (e.g. zif-268)
that are up-regulated during REM sleep in response to
manipulations and memory tasks targeting the amygdala
and hippocampus (HC) [16–18], suggesting that sleep
constitutes a privileged window for consolidation of
emotional memories within larger associative networks
[19–21]. At the cellular and regional levels, activation
patterns seen during daytime task training in the rat (e.g.
[22]) and human HC [23,24] are reactivated during
subsequent slow wave sleep (SWS). Moreover, medial
temporal regions, including the amygdala and HC, are
more active during REM sleep than during wakefulness
[25,26]. Thus, although sleep is a state of behavioral
quiescence, it is associated with intense neuronal activ-
ity, increased expression of key plasticity-related genes
in the brain, reactivation of neuronal assemblies involved
in learning, and functional increases in brain areas
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necessary for emotional memory processing. Moreover,
sleep often selectively benefits the consolidation of
emotional over neutral information [14] and leads to
strengthened connectivity within an emotional memory
retrieval network [27!,28–30]. These lines of evidence
provide compelling support for an active role for sleep in
memory processing, as opposed to merely a passive role
involving circadian influences or protection for waking
interference [4].

Stress hormones and emotional memory
consolidation
Like sleep, stress exposure often benefits memory con-
solidation, particularly for emotionally arousing experi-
ences [47]. The sympathetic nervous system (SNS) and
the hypothalamic-pituitary-adrenal (HPA) axis work in
concert to enhance memory for emotional information
during times of stress [8], likely because concurrent
cortisol and norepinephrine activity in the basolateral
amygdala intensifies interactions among the amygdala,
HC and other memory-relevant regions such as the
vmPFC. Given the importance of this network for emo-
tional memory, its potentiation by stress is thought to
underlie behavioral evidence for selective consolidation
of emotional memories over neutral ones. In humans,
stress exposure facilitates the consolidation of emotion-
ally arousing, relative to neutral, pictures and stories
[48,49], and even enhances emotional relative to neutral
features within a single complex episode [7]. Evidence
from multiple levels of analysis, from cellular analysis to
fMRI studies, have demonstrated that while elevated
stress often impairs HC and PFC function, amygdala
function is enhanced (e.g. [50,51]). In humans, the corti-
sol response associated with stress exposure correlates
with HC deactivation [52], with enhanced amygdala
activity, and with better subsequent memory for

emotional information [53]. Each of these lines of work
highlights the importance of stress and cortisol during
learning on the downstream consolidation of memory for
emotionally arousing experiences.

Stress can enhance emotional memory consolidation
regardless of whether exposure directly precedes, directly
follows, or occurs during new learning. While a new meta-
analysis ([54!]; see Box 2) suggests that the effects of pre-
encoding stress on memory are varied, sleep has rarely
been considered as a mediating factor. Yet nearly all
studies showing a beneficial impact of stress on emotional
memory examine memory after delays of 24 hours or
more, necessitating a period of sleep in the retention
interval [38]. Indeed, in most studies showing emotional
memory enhancement by stress, sleep has occurred
shortly after the new materials are learned.

Working model: stress near new learning
interacts with sleep to enable selective
emotional memory consolidation
As reviewed above, sleep and stress have separately been
tied to enhanced emotional memory consolidation. Dis-
tinct from this is the idea that factors operating near new
learning (e.g. just before, just after, or during the learning
event) set the stage for downstream selectivity in sleep-
based memory consolidation, which in turn leads to the
persistence of emotional aspects of memories [55]. Here,
we propose a model that makes two novel predictions
about how these interactions between learning and con-
solidation occur. First, arousal-related neuromodulators
(e.g. norepinephrine, cortisol) present during and after
learning help set molecular ‘tags’ that designate specific
traces of emotional (or other salient) information within
an event to be prioritized for consolidation. Importantly,
the very concept of a ‘tag’ seeks to explain how neural
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Box 1 Sleep stages and emotional memory consolidation.
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Sleep is not uniform across the night. The two stages of sleep most closely linked to

selective memory consolidation are REM and SWS.

REM:

- The amount of REM sleep obtained often correlates with improved memory for emotional

information (e.g. [31–36]) and to neural activity during retrieval of emotional information

[37], including neutral information previously studied in an emotional context [38].

SWS:

- SWS during a nap relates to selective consolidation of emotional information [39].

- During overnight sleep, slow oscillatory activity links to memory for content with future

relevance [40], and NE blockade during SWS disrupts temporal memory for emotional

information [41].

- For memories cued during sleep, SWS duration and SWS spindles relate to facilitated

memory judgments for emotional information [42].

Interactions between SWS and REM:

- Sequential models of consolidation, whereby SWS enables network-level reconfiguration

of memory traces, and REM sleep operates upon those reconfigured traces (e.g. [43–45])

may apply to emotional memory [46].
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signaling creates a target for subsequent plasticity-related
products (PRP) that are essential for sustained and selec-
tive plasticity in neural circuits. Thus, such tags, which are
set during or near the learning event [56,57!], ensure
memory specificity by guaranteeing that PRPs required
for memory stabilization are captured only by activated
representations and not others, thereby setting the stage
for consolidation of selective event features to occur. This
stabilization process enables the relevant representations

to retain their strength for at least several hours. Although
we cannot measure these tags directly in humans, we
propose that evidence of these tags exists in strengthened
connectivity among regions critical for emotional mem-
ory — the amygdala, hippocampus, and ventromedial
PFC — as well as in improved behavioral performance
(i.e. behavioral tagging [58!!]) for emotional relative to
neutral content. Second, and critically, the model argues
that the unique high frequency stimulation and
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Box 2 Encoding-related stress and selective memory consolidation.
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A recent meta-analysis [54!] digested the conditions under which stress around

the time of learning benefits memory. While this meta-analysis emphasized

distinctions between pre-encoding, encoding, and post-encoding stress, the

combination of features revealed to benefit memory would be consistent with

the exposure of stress concurrent with a real-world experience: The stress

would onset close to the time of an event, would be relevant to the encoded

event content, and would occur in the same context as the encoded event.

As summarized in the text, the new model adds a layer to the proposed effects

of Cortisol on memory, making predictions not for overall effects on memory

but for selective memory benefits for emotional (or other salient) aspects of an

event that may become maximally apparent after sleep. The model proposes

that memory selectivity after sleep will be exaggerated when Cortisol and

norepinephrine levels are high around time of learning (before, during, or

shortly after learning occurs) and when there are clear prioritization signals

present around the time of new learning.

Figure 1
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During an emotional experience, stress-related and arousal-related neuromodulators are released. Their presence helps set molecular tags that
mark key features of an emotional experience. The unique, high-frequency stimulation that occurs during post-learning sleep (e.g. hippocampal
sharp wave ripples, sleep spindles, theta rhythm) further potentiates these changes, helping to translate shorter-term synaptic changes into the
long-lasting changes that underlie systems consolidation.

Current Opinion in Behavioral Sciences 2018, 19:36–43 www.sciencedirect.com



reactivation that occurs during post-learning sleep is
essential for linking these distributed tags into the inte-
grated memory trace that allows long-lasting systems
consolidation. In other words, sleep is necessary for the
integration of these synaptic tags, which are an early
signature of activity in both subcortical (HC, AMY)
and neocortical (PFC) areas [59], to either persist or at
least to ensure the progressive rewiring of these networks
that support long term memory storage. The outcome is
that neural and behavioral markers of selective emotional
memory consolidation will be optimal when first, arousal

related neuromodulators are elevated around the learning
event, and second, sleep occurs shortly thereafter during
the consolidation interval (Figure 1).

This model is well grounded in the existing neurobiolog-
ical literature. Amygdala stimulation and emotional
arousal can prolong early-LTP into late-LTP, which
requires protein synthesis (e.g. [60]), and pharmacological
studies provide evidence for noradrenergic involvement
in LTP modulation [61]. Activation of the molecular
cascades that regulate protein synthesis could be one
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Figure 2
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Higher resting cortisol (a) or skin conductance response (b) at the time of learning was linked to enhanced retrieval of negative, but not neutral,
information. Enhanced resting cortisol also was related to (c) an increased relation between looking time at encoding and subsequent memory
specifically for negative (not neutral) information and (d) enhanced activity in the medial PFC (in red) and amygdala (in purple) during retrieval of
negative information. These patterns were significant only in those who slept (and not those who remained awake) during the memory delay
period.
Figures adapted from [65] (b) and [27!,28] (a, c, and d).
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of the functions of norepinephrine, and perhaps other
arousal related neuromodulators such as cortisol. In the
presence of a temporally related emotional learning
event, neuronal metabolism, transcription, and translation
may be activated via noradrenergic projections, thus
providing the tagged synapses with the proteins required
to reinforce and prolong the modification in synaptic
efficacy. Synaptic tagging is a cellular phenomenon, yet
activation of PRPs may be triggered by emotional events
and likely results in the consequent release of arousal-
related neuromodulators that enhance connectivity
within critical emotional memory circuits (e.g. amygdala,
hippocampus, PFC regions). It is therefore a phenome-
non that may bridge cellular and systems aspects of
memory formation. Thus, synaptic tagging can act as a
filter that ‘selects’ a relevant event, or even a specific
aspect of an event, allowing only that information to be
subject to the longer time scale of systems consolidation.

Sleep may be the ideal brain state for systems consolida-
tion to occur [62], because it is a protected time that also
consists of several unique high frequency stimulation
events (spindles, sharp wave-ripple events, theta rhythm)
that may help maintain system wide plastic changes over
a longer period. Additionally, because there is also cho-
linergic involvement in LTP modulation [63], the acetyl-
choline-driven REM sleep state may help boost long-
term plastic changes for emotional memories specifically.
Thus, once the tags are set during learning, sleep may
contribute to the lasting and selective plasticity within
emotional memory networks required for long-term emo-
tional memory. Indeed, we have shown previously that
optimal emotional memory consolidation occurs when
two conditions are met: cortisol levels are elevated during
learning and sleep takes place during the subsequent
consolidation delay ([27!,28]; see Figure 2). Thus, while
cortisol benefits effective tagging, increasing the likeli-
hood of long-term plasticity [64], sleep enhances the
efficiency with which those tags are executed.

One important consideration is that cortisol has a sluggish
timecourse. Thus, although cortisol may provide impor-
tant background conditions for setting a salience ‘tag’,
there must be a faster signal that denotes salience on a
trial-by-trial basis. Indeed, we have demonstrated that
trial-by-trial changes in skin conductance responses dur-
ing learning predict subsequent memory for emotional
(but not neutral) information 12hr later, but, again, only if
a night of sleep occurred during the delay ([65]; see
Figure 2b).

We hypothesize that the sympathetic responses gener-
ated by the emotionally arousing stimuli themselves
provide a salience signal, and that, along with elevated
cortisol during learning, an optimal neurochemical envi-
ronment for the ‘tagging’ of these salient portions of an
event is achieved. Although this hypothesis still requires

direct testing, it is in line with evidence demonstrating
that HPA axis and sympathetic activation are essential for
emotional memory consolidation (e.g. [66,67]). Consoli-
dation processes, which we hypothesize will be optimized
during sleep, would then ‘select’ these emotionally
salient items for preferential processing, leading to
long-lasting changes in the neural trace that continue
to be reflected at the time of retrieval.

Conclusion
Although separate literatures link sleep and stress to
selective emotional memory consolidation, we argue that
these brain states interact in critical, indeed necessary,
ways to promote selective remembering. Secretion of
stress-related and arousal-related neuromodulators at
the time of encoding promotes the selective tagging of
memories, which is necessary for sleep-based processes to
identify the correct representations for reactivation and
systems-level memory reorganization. Likewise, sleep
soon after encoding is necessary for these stress and
arousal promoted tags to achieve a long-lasting impact,
because sleep physiology is unique in its ability to pro-
mote the high frequency stimulation that we believe
promotes the systems level consolidation underlying truly
long-term memory. In this cooperative manner, we sug-
gest that stress and sleep, by linking encoding and con-
solidation processes, and by linking synaptic consolida-
tion to systems consolidation, allow long lasting emotional
memories to form and persist.
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